
Local Properties of Geometric Graphs

Jean Cardinal 1 Sébastien Collette 2 Stefan Langerman 3

Computer Science Department, Université Libre de Bruxelles, CP212,

Boulevard du Triomphe, 1050 Bruxelles, Belgium

Abstract

We propose a definition of locality for properties of geometric graphs. We measure
the local density of graphs using region-counting distances [8] between pairs of
vertices, and we use this density to define local properties of classes of graphs.

We illustrate locality by introducing the local diameter of geometric graphs: we
define it as the upper bound on the size of the shortest path between any pair of
vertices, expressed as a function of the density of the graph around these vertices.
We determine the local diameter of several well-studied graphs such as Θ-graphs,
Ordered Θ-graphs and Skip List Spanners. We also show that various operations,
such as path and point queries using geometric graphs as data structures, have
complexities which can be expressed as local properties.

1 Introduction

We consider here geometric graphs, where the vertices are points in the plane.
In particular we consider graphs generated by a set of points. Some of these
graphs belong to the the class of proximity graphs [11], where given a set of
points S, two points in S are adjacent if they are close in some sense. Many
such graphs have been studied in computational geometry, such as Delau-
nay triangulations, Nearest Neighbor graphs, Relative Neighborhood graphs,
Gabriel graphs and Θ-graphs [13, 11, 9, 12]. The properties defined on such
graphs are most of the time expressed as a function of n, the number of ver-
tices in the graph. For instance, the Nearest Neighbor graphs have n edges,
the degree of the vertices in a Delaunay triangulation is O(n), etc. In this
context, this is what we call global properties.

1 jcardin@ulb.ac.be
2 Aspirant du F.N.R.S., sebastien.collette@ulb.ac.be
3 Chercheur qualifié du F.N.R.S., stefan.langerman@ulb.ac.be

Preprint submitted to Elsevier Science 27 February 2007

We say that a property is local if it is expressed as a function of the number of
vertices geometrically close to the studied ones. To formalize this, we must de-
fine which vertices are close. Therefore we use region-counting distances [8, 10]:
these are distance functions parameterized by a finite point set (the vertices
of our graph) in which the distance between two points is the number of items
contained in a region surrounding these points. We illustrate locality with the
study of the local diameter. The diameter of a graph is an upper bound on
the size (number of edges) of the shortest path between any pair of vertices.
We define the corresponding local diameter as the same upper bound, but as
a function of the region-counting distance between the pair of points.

Geometric graphs are used in numerous fields: motion planning, VLSI design,
Geographic Information Systems [7, 16]; in these contexts they are often used
as data structures for a set of points and they have to support different kinds
of queries: check if a point in R

2 belongs to the set S defining the graph (point
query), find the closest vertex in the graph to a given point in R

2 (nearest
neighbor query), or find a path in a graph from one vertex to another (path
query).

The point query problem in R
2 is a 2-dimensional extension of the dictionary

problem, which consists in retrieving the information associated with a key
in a totally ordered dataset. The complexity of this operation is usually ex-
pressed as a function of n, the number of keys in the set. For that problem,
interesting properties were studied. The dynamic finger property certifies that
a query can be answered in a time logarithmic in the rank difference between
the current and the previous query. The rank difference between two items
in R is the number of items contained in the interval between them. For in-
stance, Level-Linked Trees of Brown and Tarjan [3] and Splay Trees of Tarjan
and Sleator [17] have the dynamic finger property. These properties have been
extended to the 2-dimensional case. Demaine, Iacono and Langerman general-
ized the rank difference and the dynamic finger property to the plane [8]. The
proposed generalizations of the rank difference are region-counting distances,
and the dynamic finger property in R

2 is the same as in R but uses these dis-
tances. In this work, the use of region-counting distances allows us to bound
the time needed for these queries, in a more flexible way than just ensuring
that it has, or has not, the dynamic finger property generalized to the plane.

In section 2, we describe the region-counting distances and give examples of
neighborhood regions used in what follows. In section 3, we introduce some
properties of geometric graphs and we describe t-Spanner graphs. Section 4
is dedicated to the study of locality: we give bounds on the local diameter of
Ordered Θ-graphs [2], Skip List Spanners [1] and Proximate Point Searching
structures [8]. We study the complexity of point and path queries and see
how they are related to the local diameter. A table summarizing the results
is presented and commented in section 5.

2

2 Region-counting Distances

The region-counting distances are a natural class of 2-dimensional distance
functions introduced in [8] by Demaine, Iacono and Langerman. They were
used in different contexts: point searching and location [8, 10] and definition
of proximity graphs [5]; their properties were studied in [4].

The point set S is an implicit parameter of these distance functions. An in-
fluence region defines the neighborhood around any pair of points which must
be considered to compute the distance:

Definition 1 An influence region R is a function mapping a pair (p, q) of
points in R

2 to a subset R(p, q) of R
2.

Definition 2 An anchored region R is an influence region parameterized by
a triple (a, b, D), where a and b are points in R

2 and D is a subset of R
2. The

set R(p, q) is the subset of R
2 obtained by translating, rotating and uniformly

scaling D so that a maps to p and b maps to q.

p q p q

p q

Fig. 1. Ellipse region-counting distance dEt
(p, q) = 9, ice-cream cone region-counting

distance dIt
(p, q) = 4 and circle region-counting distance dC(p, q) = 12.

3

The distance is the cardinality of the intersection of the dataset and the neigh-
borhood:

Definition 3 A region-counting distance dR = dS
R(p, q) parameterized by a

finite point set S ⊆ R
2 and an influence region R, is defined by dR(p, q) =

|S ∩ R(p, q)|.

Figure 1 shows three different sample regions which can be used to compute
the region-counting distance between two vertices p and q. We denote by dRt

a region-counting distance whose shape depends on a parameter t. A given
region-counting distance is defined by an unique template region, with fixed
parameter.

The ice-cream cone [8] It(p, q) is the convex hull of p and a disk of radius
t·d2(p, q) centered at q, where d2 is the Euclidean distance. The ellipse Et(p, q)
is the locus of the points r such that d2(p, r) + d2(r, q) = t · d2(p, q).

3 t-Spanner Graphs

t-Spanner graphs are a subclass of geometric graphs in which the length of the
shortest path joining two vertices is within a factor of the Euclidean distance
between them. We will concentrate on this class of graphs as we will see that
they are good candidates for the study of local properties.

Definition 4 The length of a path P = {u1, u2, . . . , uk} in the graph G is
dG(P) =

∑k−1
i=1 d2(ui, ui+1) where d2 is the Euclidean distance.

Definition 5 A graph in the plane is a t-Spanner if and only if

∀u, v ∈ V :
dG(u, v)

d2(u, v)
≤ t ∈ [1,∞),

where t is called the spanning ratio of the graph.

In what follows, we present several classes of t-Spanner graphs and give bounds
on their spanning ratio. Local properties of these graphs are studied in the
next sections.

3.1 Θ-graph

Chew [6] defined the t-Spanners with the aim of approximating the complete
Euclidean graph. Keil [12] introduced the Θ-graph to provide a way to con-

4

struct t-Spanners efficiently. This structure is similar to the Yao graph [19],
which was introduced ten years before.

A Θ-graph G is a directed graph defined by a point set V. In a Θ-graph, each
vertex has up to k outgoing edges connected to the closest vertex in k = 2π/Θ
different cones.

p

p1

p2

p3

p5

p7

Fig. 2. Plane subdivision using cones, as used in Θ-graphs and variants.

The ith cone associated to a vertex p in a Θ-graph is the subspace containing
all the points with absolute angle from p between iΘ included and (i + 1)Θ
excluded. There are k = 2π/Θ cones for each vertex. Figure 2 shows the cones
associated with one vertex. In each cone i of the vertex p, the outgoing edge is
connected to the closest vertex, denoted by pi. Various definitions of the closest
vertex can be found in the literature; while the Euclidean distance (Figure 3a)
seems to be the most natural, the closest vertex in a cone is defined in [12, 19]
as the one having the closest orthogonal projection onto the border of the cone
(Figure 3b) in e.g. [2]. Other authors define it as the vertex with the closest
orthogonal projection onto the bisector of the cone (Figure 3c) e.g. [15].

a) b) c)

Fig. 3. Different ways to see which is the closest vertex in a cone.

Θ-graphs have at most k(n−1) edges, at most k outgoing edges per vertex and
at most n−1 in-going edges. Ruppert and Seidel [15] proved that the Θ-graph
with Θ < π/4 is a t-Spanner graph, with t = (1 − 2 sin(Θ/2))−1, when using
the orthogonal projection onto the bisector to choose the closest vertex in a
cone. The variant in which the points are projected onto the closest border of
the cone leads to t-Spanner graphs with the same spanning ratio. To find a
t-Spanner path, which is a path in the graph achieving the spanning ratio, the

5

algorithm always follows the edge in the cone containing the other endpoint
of the path, until it is reached.

3.2 Ordered Θ-graph

The Ordered Θ-graph G = (V, π) [2] is mainly based on the Θ-graph, and
uses the same cone subdivision of the plane. It has been proposed by Bose,
Gudmundsson and Morin, as a solution to some weaknesses of the original
Θ-graph. The difference is that in the Ordered Θ-graph the order of insertion
of the vertices π matters: each vertex is connected to up to k edges, which
are the closest previously inserted vertices in the k cones. If the order π is
a random permutation of the set of vertices, the corresponding graph has a
small diameter. As we rely on this property in this work, when we refer to
Ordered Θ-graphs we refer to random Ordered Θ-graphs where vertices are
inserted in random order. Based on the properties of the Θ-graph, the Ordered
variant also has a linear number of edges, a linear in-degree and a constant
out-degree. Its spanning ratio is t ≤ 1

cos(Θ)−sin(Θ)
.

3.3 Skip List Spanner

The Skip List is a data structure introduced by Pugh [14] to create lists with
low access cost. Using this structure, any item in the list can be reached in
O(log n) time. The Skip List Spanner G = (V, ω) [1] is a Skip List extension
of the Θ-graph introduced by Arya, Mount and Smid, where every vertex is
assigned to a level. It is a randomized structure. The level assignment ω is made
by throwing a fair coin for every vertex. As the coin flips are independent, on
average half of the vertices will get a head, and will be assigned to the first
level. For the other half, a second independent coin flip assigns, on average,
one quarter of the points to the second level. For the last quarter, a third coin
is thrown, and so on. This will lead typically to log n levels, level l containing
n/2l vertices on average.

For each level, a regular Θ-graph is constructed, containing only the vertices
present in the current level and all the higher levels. This means that a vertex
at level l is present in l different Θ-graphs. From there, we know that the out-
degree is logarithmic with high probability. The spanning ratio is the same as
the Θ-graph, as the Skip List Spanner contains it.

6

3.4 Proximate Point Searching graph

The Proximate Point Searching graph, as defined in [8], is a directed graph
where each vertex has O(log n) outgoing edges. This graph is, by multiple
aspects, very similar to the Skip List Spanner [1]: a vertex is surrounded by
k non-overlapping cones; the edges in the cone k handle travel in a direction
with absolute angle between 2πi/k and 2π(i + 1)/k.

p

Fig. 4. Triangles in each cone at level 2.

In the Proximate Point Searching graph, each vertex p is in ⌈log3/2 n⌉ levels. At
level r and in each cone, p is associated with the largest triangle τ , containing
the (3/2)r closest points in that cone, if possible. Figure 4 shows the triangles
present at level two. We denote by τ(p,r,i) the triangle τ associated with vertex
p, in cone i and at level r.

τ1

τ2
τ3

p p p

r = 4 ;
⌊(

3
2

)r⌋

=
⌊

81
16

⌋

= 5 ;
⌊

(

3
2

)r−1
⌋

=
⌊

27
8

⌋

= 3

Fig. 5. Subdivision of τ in three overlapping sub-triangles.

The triangle τ contains three overlapping sub-triangles τ1, τ2 and τ3, each of
them containing up to (3/2)r−1 points which are the closest points to each
corner of the triangle τ . The sub-triangle containing the apex p of the cone
is τ1. Figure 5 shows three views of the triangle τ at level four, and thus
containing at most five points. For each cone and level, p has six outgoing
edges connected to the vertices closest to each border edge of τ2 and τ3.

We know that we can reach a vertex in each sub-triangle in one step, because

7

there is an edge to the closest vertex to each edge in τ2 and τ3, and that pi

itself is contained in τ1. Moreover it has been shown in [8] that τ1∪τ2∪τ3 ⊇ τ .

Lemma 6 The Proximate Point Searching graph contains a Θ-graph as its
subgraph with Θ = 2π/k.

PROOF. We know that for each vertex p, in each cone, at level two the
triangle τ contains up to two vertices (in fact at most 9/4 vertices): p, and the
closest vertex in that cone.

We also know that τ1, τ2 and τ3 contain at most one vertex. τ1 contains p, and
thus the other vertex is contained in τ2 or τ3.

As we know that there is an edge to at least one vertex in τ2 and τ3, if such a
vertex is present, and that we know that the closest vertex in the cone is the
only vertex of τ2 or τ3, we can say that there is an edge between the apex and
the closest vertex in the cone, which is precisely the definition of the Θ-graph.
As we extend a triangle, whose extended edge is perpendicular to the bisector
of the cone, we must consider the closest orthogonal projection on the bisector
(Figure 3c). 2

The Θ-graph is a t-Spanner, and is a subgraph of the Proximate Point Search-
ing graph. This shows that the latter is a t-Spanner. Other properties of this
graph can be found in [8].

4 Local Properties of Geometric Graphs

Let G be the set of all possible geometric graphs. A graph property P is
formally a subset of G. We say that a graph G satisfies P if G ∈ P.

Definition 7 A local property P for a graph G = (V, E) is an inequality
between a function f(G, p, q) and the region-counting distance dR(p, q) between
p and q in V .

Definition 8 A geometric graph G is said to have the property P when this
relation holds for all pair p, q in V .

Intuitively, a property is local if it depends only on vertices close to the ones
considered. The next subsection shows why t-Spanner graphs are good can-
didates to study locality. We then analyze three local properties: the local
diameter, the point query complexity and the path query complexity. A typi-

8

cal desirable local property is to have a local diameter in O(log dR(p, q)), we
will see that this bound is satisfied by some of the graphs considered here.

4.1 A Property of t-Spanner Paths

Definition 9 A t-Spanner path P between the vertices u and v satisfies

dG(P)

d2(u, v)
≤ t

A t-Spanner path between two vertices is not always the path with minimal
length or with minimal size. We know however that in any t-Spanner graph,
there are t-Spanner paths between every pair of vertices.

Lemma 10 Let G be a t-Spanner graph; let p and q be two vertices of this
graph. Any t-Spanner path between p and q is composed of edges and vertices
contained in an ellipse Et(p, q) whose foci are p and q and whose parameter
is t.

PROOF. An ellipse with foci p and q and parameter t is the locus of the
points whose sum of the distance to the two foci is equal to t times the Eu-
clidean distance between the foci. As any path from p to q going through point
r outside the ellipse has length at least d2(p, r) + d2(r, q) which is more than
t ·d2(p, q) by definition of the ellipse, we know that it cannot be the t-Spanner
path, which has length at most t · d2(p, q). The ellipse is convex and all the
vertices of the path are in the ellipse, thus the path edges are contained in the
ellipse. 2

4.2 Local Diameter

The local diameter of a graph is the upper bound on the size of the short-
est path between any pair of vertices, expressed as a function of the region-
counting distance between these vertices.

Theorem 11 The local diameter is O(dEt
(p, q)) for every t-spanner.

PROOF. We know that there is a t-Spanner path in this ellipse, and the size
of the shortest path is smaller than or equal to that of the t-Spanner path. 2

9

For the Ordered Θ-graph and the Skip List Spanner, we can however improve
this result, as stated in the following theorem:

Theorem 12 There exists a path of expected size O(log dEt
(p, q)) between any

pair of points p, q in an Ordered Θ-graph or a Skip List Spanner, where t is
the spanning ratio of the corresponding graph.

PROOF. Let G = (V, E) be an Ordered Θ-graph and G′ = (V ′, E ′) where
V ′ = V ∩ Et(p, q) be the Ordered Θ-graph generated by the vertices in the
ellipse. We consider a path from p to q in G and G′. We will simulate the use
of the path algorithm in Ordered Θ-graphs as described in [2].

Beginning from both ends p and q, the path algorithm adds an edge and a
vertex to the path at each step. By Lemma 10 and the fact that the underlying
Θ-graph is a t-Spanner, we know that this vertex is in the ellipse: the edge we
use is part of the Θ-path, which is a t-Spanner path.

To choose the vertex by which the path will be extended, the ordering is used.
As the relative order is the same, the same choice will be made in V and V ′. To
choose which edge is added, the algorithm finds the cone in which the target
item lies. Given a common origin and destination in V and V ′, the chosen
cone will be the same, as this choice depends only on the coordinates of these
two vertices. There is no vertex in V ′ which is not in V , and every vertex in
the ellipse is in V and V ′. The path algorithm selects the cone containing the
target: the edge present in this cone is the same in G as in G′. If it was not the
case, either a closer vertex would be present in the cone in V ′, or the closest
vertex in V would not be in V ′ which is not possible because this vertex is
in the ellipse. This proves that every step of the algorithm will give the same
result in both graphs: same cones and same edges will be chosen at the first
step, leading to the same recursive approach.

It has been shown in [2] that the diameter of an Ordered Θ-graph with random
permutation of the vertices as ordering is c log n with probability 1 − n−Ω(c).
Since the graph G′ is a valid Ordered Θ-graph, and its ordering π′ is induced
by π and is thus a random permutation, the diameter of G′ is O(log dEt

(p, q))
with high probability. The path has thus an expected length of O(log dEt

(p, q)).

The proof for the Skip List Spanner is similar: we consider the path in the
subgraph, which is the same as in the graph if the common vertices are at the
same level in the graph and the subgraph. 2

10

4.3 Queries and Computational Model

Graphs are often used to represent data structures. For instance in the pointer
model [18], the algorithms must use nothing else than a graph as data struc-
ture, where every vertex has a fixed number of out-going labeled edges. One
of the edges is the center or root, by which we begin to visit the graph. The
allowed operations in that model consist in following the edges, compare two
vertices to determine if they are the same, create or modify existing edges,
create or modify existing vertices.

We use a slightly different model, which corresponds more precisely to the
graphs we study. Our model uses a graph as unique data structure. Unless
otherwise specified, these operations are the only ones allowed: create, delete,
modify and compare an edge or a vertex in O(1) time, list all the vertices of
the graph (in time O(|V |)); list all the edges of the graph (in time O(|E|));
list the in-going and out-going edges of a given vertex.

As the degree of our vertices can be large, we include in our model an efficient
way of selecting an edge from a given vertex: each vertex contains an access
structure, in the pointer model, to access adjacent edges individually. Such
a structure is used for example in Skip List Spanners, in which edges are
partitioned into levels, and every operation can be restricted to a given level.
For instance, we can list all the out-going edges in level two for a given vertex.
This model enforces the use of the graph structure: we can follow edges and
paths (while staying in the same level); we can access the level above and
below in O(1) time. But we cannot reach directly an arbitrary vertex or level
in the graph.

4.4 Path Query

The path query consists in, given a graph G and a pair of query vertices (p, q),
finding a t-Spanner path between these vertices, if such a path exists. We
present here bounds on the complexity of finding such paths.

For the Θ-graph and for the Proximate Point Searching graph, a simple ar-
gument can be used: by Lemma 10, we know that the path is contained in an
ellipse. The path size is thus at most the cardinality of the set of vertices in
the ellipse, which is the ellipse region-counting distance. As every step of the
path takes constant time using the Θ-path algorithm, the complexity of the
path query is O(dEt

(p, q)).

For the Ordered Θ-graph and the Skip List Spanner, the path query algorithm
consists in beginning with the two ends of the path. The Ordered Θ-graph

11

path algorithm extends the path by the end with the highest order (the latest
vertex added), following the edge in the cone containing the other endpoint of
the path, until it is reached. The Skip List Spanner path algorithm considers
the highest level in which both ends are present. The path is extended by the
end with the lowest level, following the edge in the cone containing the other
endpoint of the path, until it is reached.

Theorem 13 Path queries are answered in time O(log dEt
(p, q)) with high

probability in an Ordered Θ-graph or a Skip List Spanner.

PROOF. By Theorem 12, we know that for each pair of vertices (p, q),
the length of the path between them is O(log dEt

(p, q)). Each step of the
path construction algorithm can be achieved in constant time, resulting in
a O(log dEt

(p, q)) bound for path queries in Skip List Spanners and Ordered
Θ-graphs. 2

4.5 Point Query

The point query consists in, given a data set S and a query q, finding the item
q in S if such an item exists. In order to exploit locality, the query algorithm
should use the position of the previous query point. For this, the algorithm
will follow edges in the graph representing the search structure, along a path
from the previous query point p to the present query point q. The number of
edges traversed can then be expressed as a local property, i.e. as a function of
dR(p, q).

Note that the point query has not necessarily the same complexity as the
path query. Path queries return t-spanner paths, while for point queries we
just want to reach the destination as quickly as possible.

Typically, this method can be used when we know that close queries occur
frequently. Close vertices influence the query time, while distant vertices are
not taken into account to answer the query. This is the approach used in
the Proximate Point Searching data structure [8], whose point query time is
O(log dIt

(p, q)) where dIt
is the ice-cream cone region-counting distance [8].

The ice-cream cone distance is in some sense better than the ellipse distance,
because ∀ t0, ∃ t1 : It1(p, q) ⊆ Et0(p, q) while the converse is not true.

For the other graphs, we know that the number of nodes visited to reach the
query is at most the length of the path between the previous query and the
current one. An upper bound on the point query complexity is the product
of the length of the path and the complexity of the routing algorithm at each

12

node. This gives an O(dEt
(p, q)) complexity for the Θ-graph and Skip List

spanner.

Theorem 14 The time complexity of point queries is bounded by the time
to perform a path query between the the previous and the current query in
Θ-graphs and Proximate Point Searching graphs.

PROOF. The path query algorithm can be used: to construct a path we just
need to know one of its endpoints (the previous query) and the direction to
the current query point.

For the Skip List Spanner, we cannot use the path algorithm to answer point
queries, because the algorithm relies on a method where we construct the path
from both ends. This does not make any sense for the point query, as we do
not have any information concerning the target, and thus we cannot construct
the path by this end. That is why the point query complexity is the same as
the one for the Θ-graph.

5 Results and Discussion

The table given by Fig. 6 shows properties of various graphs where n is the
number of vertices and d is the region-counting distance between the two
considered items and using the corresponding region: the ellipse or the ice-
cream cone [8]. Other results summarized in that table come from the original
papers describing these graphs [8, 12, 1, 2], and are detailed in section 3. For
the point query, the two items are the previous and the current query, for the
path query these are the path ends.

There is not only one path query algorithm. Here, we consider algorithms
constructing t-Spanner paths: we must ensure that the path computation will
not use vertices and edges outside a shape. For the point query, the algorithm
begins with the previous query and searches for a path to the current query.
It is not always possible to use the path query algorithm to perform a point
query, as some of them construct the path by both ends. As one can see, a
small local diameter is not sufficient to have a small path query or point query
complexity. But it is a necessary condition: we cannot find a path containing
k edges in less than k steps.

The Proximate Point Searching graph combines small diameters and good
point query performance, but at the expense of the number of edges. The
path query is in O(log d) if we use the point query algorithm, but this is not
necessarily a t-Spanner path.

13

Θ-graph Ordered Θ-graph

Edges O(n) O(n)

in-degree O(n) O(n)

out-degree ≤ 2π
θ

≤ 2π
θ

Spanning Ratio t ≤ 1
1−2 sin(Θ

2
)

t ≤ 1
cos(Θ)−sin(Θ)

Path query O(d) O(log d) w.h.p.

Point query O(d) Not always possible

Diameter O(n) O(logn) w.h.p.

Local diameter O(d) O(log d) w.h.p.

Minimal Region Ellipse Et Ellipse Et

Skip List Spanner Proximate Point Search.

Edges O(n) w.h.p. O(n log n)

in-degree O(n) O(n log n)

out-degree O(log n) w.h.p. (2π
θ

per level) O(log n)

Spanning Ratio t ≤ 1
1−2 sin(Θ

2
)

Contains Θ-graph

Path query O(log d) w.h.p. O(d)

Point query O(d) O(log d)

Diameter O(log n) w.h.p. O(log n)

Local diameter O(log d) w.h.p. O(log d)

Minimal Region Ellipse Et Ice-Cream Cone It

Fig. 6. Comparison of properties of geometric graphs. d is the region-counting dis-
tance using the given region. Bounds are worst cases, or hold with high probability
when mentioned (w.h.p.).

5.1 Future Work

An extension of this work is the study of locality for other classes of graphs.
In particular, is there a graph or a class of graph combining all the “good”
aspects: a small local diameter, dynamic finger, logarithmic path query com-
plexity, linear number of edges?

We studied extensively the properties of proximity graphs defined by different
region counting distances in [5]. We could determine the extremal regions
ensuring various properties. We could also try to minimize the region used to

14

characterize locality here: what is the minimal region needed, what are the
properties common to all the regions which can be used in that context?

We introduced locality with the local diameter and the complexities of point
and path queries. What are the other graph properties which are local, or
where a local definition can be found?

Acknowledgment

We would like to thank Pat Morin and the anonymous referees for their helpful
comments.

References

[1] S. Arya, D. Mount, and M. Smid. Randomized and deterministic algo-
rithms for geometric spanners of small diameter. In Proceedings of the
35th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 703–712, 1994.

[2] P. Bose, J. Gudmundsson, and P. Morin. Ordered theta graphs. In
Proceedings of the Canadian Conference on Computational Geometry
(CCCG), pages 17–21, 2002.

[3] M. Brown and R. Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM Journal on Computing, 9:594–614, 1980.

[4] J. Cardinal, S. Collette, and S. Langerman. Region counting circles.
In Proceedings of the Canadian Conference on Computational Geometry
(CCCG05), pages 278–281, August 10–12 2005.

[5] J. Cardinal, S. Collette, and S. Langerman. Region counting graphs. In
Proceedings of the 21st European Workshop on Computational Geometry
(EWCG05), 2005.

[6] L. P. Chew. There is a planar graph almost as good as the complete graph.
In Proceedings of the 2nd Annual ACM Symposium on Computational
Geometry (SoCG’86), pages 169–177, 1986.

[7] K. Clarkson. Approximation algorithms for shortest path motion plan-
ning. In Proceedings of the 19th ACM Symposium on Theory of Comput-
ing (STOC’87), pages 56–65, 1987.

[8] E. D. Demaine, J. Iacono, and S. Langerman. Proximate point search-
ing. In Proceedings of the 14th Canadian Conference on Computational
Geometry (CCCG), 2002.

[9] D. Eppstein, M. Paterson, and F. Yao. On nearest-neighbor graphs. Dis-
crete and Computational Geometry, 17:263–282, 1997.

[10] J. Iacono and S. Langerman. Proximate point location. In Proceedings

15

of the 2003 ACM Symposium on Computational Geometry (SoCG 2003),
pages 220–226, 2003.

[11] J. Jaromczyk and G. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80(9):1502–1571, 1992.

[12] J. Keil and C. Gutwin. Classes of graphs which approximate the com-
plete euclidean graph. Discrete and Computational Geometry, 7(1):13–28,
1992.

[13] D. Lee and A. Lin. Generalized delaunay triangulations for planar graphs.
Discrete and Computational Geometry, 1:201–217, 1986.

[14] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Com-
mun. ACM, 6:668–676, 1990.

[15] J. Ruppert and R. Seidel. Approximating the d-dimensional complete
euclidean graph. In Proceedings of the 3rd Canadian Conference on Com-
putational Geometry (CCCG’91), pages 207–210, 1991.

[16] N. Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer,
1993.

[17] D. Sleator and R. Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, 1985.

[18] P. van Emde Boas. Handbook of Theoretical Computer Science: Volume
A: Algorithms and Complexity. Elsevier, 1990.

[19] A. Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982.

16

