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Abstract

We study several coloring problems for geometric range-spaces. In addition to their theoret-
ical interest, some of these problems arise in sensor networks. Given a set of points in R2 or
R3, we want to color them such that every region of a certain family (e.g., every disk containing
at least a certain number of points) contains points of many (say, k) different colors. In this
paper, we think of the number of colors and the number of points as functions of k. Obviously,
for a fixed k using k colors, it is not always possible to ensure that every region containing k
points has all colors present. Thus, we introduce two types of relaxations: either we allow the
number of colors used to increase to c(k), or we require that the number of points in each region
increases to p(k).

Symmetrically, given a finite set of regions in R2 or R3, we want to color them such that every
point covered by a sufficiently large number of regions is contained in regions of k different
colors. This requires the number of covering regions or the number of allowed colors to be
greater than k.

The goal of this paper is to bound these two functions for several types of region families,
such as halfplanes, halfspaces, disks and pseudo-disks. This is related to previous results of
Pach, Tardos and Tóth on decompositions of coverings.
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1 Introduction

A large amount of research in discrete geometry concerns algorithms and bounds for sampling and
decomposing sets of simple geometric objects. The now standard notion of ε-net [7] and the theory
of geometric discrepancy [5] are famous illustrations of the importance of this field.

In this contribution, we are interested in coloring (or, equivalently, partitioning) finite sets of
points in R2 or R3 so that any region (within a specified family) that contains at least some fixed
number of points, also contains a significant number of distinctly colored points. For example, we
study the following problem: Does there exist a constant α such that given any set of points in the
plane, it is always possible to color the points with k colors so that any halfplane containing at least
αk points contains a point of each color? In Section 2 we answer this question on the affirmative.

In all cases that we consider, the number of colors and the number of points required within
regions are significantly smaller than the size of the point set. We also allow the number of available
colors and the number of required distinct colors to be different. We ask, for instance, Does there
exist a constant α such that given a set of points in the plane, it is always possible to color the points
with αk colors so that any halfplane containing at least k points also contains points of k distinct
colors? We show this is true as well, and even give a small upper bound on the value of α. We ask
similar questions for other types of regions such as disks and pseudo-disks (simple closed Jordan
regions, the boundaries of any pair of which intersect at most twice).

These types of problems can be seen as coloring range spaces induced by intersections of sets
of points with geometric objects. The corresponding dual range spaces are those obtained by
considering a finite set of regions in R2 or R3, and defining the ranges as the subsets of all regions
containing a given point, for every possible point. We also consider coloring problems on these
kinds of range spaces. The types of problems we ask when dealing with dual range spaces are
analogous to the preceding questions. For instance: Does there exist a constant α such that given
any set of disks in the plane, it is always possible to color the disks with αk colors while ensuring that
any point contained in at least k disks is contained in disks of k distinct colors?

Before stating the results formally, we introduce several definitions.

Definitions A range space (or hypergraph) is a pair (S,R) where S is a set (called the ground set)
and R is a set of subsets of S. In this paper, we consider finite restrictions of infinite geometric
range spaces of the form S = (Rd,R) for d = 2 or 3, where R is an infinite family of regions of
Rd. Such a finite restriction is a range space (S,R) where the ground set S is a finite set of points
in Rd and the set of ranges R is the collection of subsets of S defined by the intersection of S with
elements of R : R = {S ∩ r : r ∈ R}.

We also consider the corresponding dual range spaces, denoted by S̃, of the form S̃ = (R, {r(p) :
p ∈ Rd}), where r(p) = {r ∈ R : p ∈ r} is the set of regions containing the point p. The finite
restrictions of these dual range spaces are of the form (S, {r(p) ∩ S : p ∈ Rd}), where S ⊂ R is
finite.

A coloring of a range space is an assignment of colors to the elements of the ground set. A
c-coloring is a coloring that uses exactly c colors. A range is said to be k-colorful with respect to
some coloring if it contains at least k elements of distinct color. We are interested in the following
two types of functions, for a range space S:

1. cS(k) is the minimum number for which there always exists a cS(k)-coloring of any finite
restriction of S, such that every range r is min{|r|, k}-colorful.
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2. pS(k) is the minimum number for which there always exists a k-coloring of any finite restric-
tion of S such that every range of size at least pS(k) is k-colorful.

Note that cS(k) and pS(k) are monotone non-decreasing functions. The functions apply to any
range space S or its dual S̃. The goal of this paper is to provide upper bounds on cS(k), pS(k),
cS̃(k), and pS̃(k) for various types of families R of regions in R2 and R3. We always consider the
ground sets to be large enough, that is, unbounded in terms of k.

Previous results The functions defined above are related to two previously studied problems.
The first one is the decomposition of f -fold coverings in the plane: given a covering of the plane

(or of some simple compact subset such as a square) by a set of regions such that every point
is covered by at least f regions, is it possible to decompose it into two disjoint coverings? This
question was first asked by Pach in 1980 [11]. It is similar to deciding whether pS̃(2) ≤ f for the
dual range space S̃ defined by the considered family of regions, the difference being that we do not
assume that all points are f -covered. This difference is important in some cases, for instance it is
known that all (d + 1) · f -covers of d-space by halfspaces decompose into f covers [12], but the
proof does not directly yield a bound for pS̃(2).

For T the range space defined by translates of a centrally symmetric convex polygon, Pach [11]
proved that pT (2) exists. His proof yields an exponential upper bound on pT (k). Then Pach and
Tóth [15] improved this by showing that pT (k) = O(k2) and pT̃ (k) = O(k2). So for these types of
regions, a covering can be decomposed into k coverings if each point is covered at least ck2 times
for some constant c. On the negative side, for the range space induced by arbitrary disks (denoted
by D), Mani and Pach [10] proved that even pD(2) is unbounded: for any constant k, there exists
a set of points that cannot be 2-colored so that all open disks containing at least k points contain
one point of each color (see also [14]). In [14], a similar result is obtained for pÃ(2) where A is
the range space induced by the family of either strips (sets defined by all points enclosed between
two parallel lines), axis-aligned rectangles, or translates of concave quadrilaterals. More precisely,
for any integer f there exist f -fold coverings with strips, or axis-aligned rectangles, or concave
quadrilaterals, that cannot be decomposed into two coverings. The fact that pS̃(2) is unbounded
implies that for all k > 2, pS̃(k) is unbounded as well, since any bound for the latter would imply
a bound for the former by merging color classes. The previous impossibilities constitute our main
motivation for introducing some slack and defining the problem of c(k)-coloring a finite range space
such that ranges are k-colorful, with k ≤ c(k).

The second previously studied problem is that of computing the chromatic number of geo-
metric hypergraphs, defined as the minimum number of colors needed to make all ranges non-
monochromatic, i.e. 2-colorful [17]. One of the main results of that contribution is that any dual
range space induced by a finite set of pseudo-disks admits a O(1)-coloring that makes all ranges
2-colorful. Hence, for the family of pseudo-disks P, cP̃(2) = O(1). It was also shown that for the
special case of disks cD̃(2) = 4.

A recent result of Chen, Pach, Szegedy and Tardos ([6], Thm. 3) implies that for any constants
c, p, the following holds: there exists a point set such that for any c-coloring of its elements, we can
find an axis-aligned rectangle containing at least p points, all of which have the same color. In fact,
this holds with high probability for random point sets. This implies that cA(k) and pA(k), whereA is
the range space induced on R2 by the set of all axis-aligned rectangles, are unbounded. A previous
result of Kř́ıž and J. Nešeťril [8] on the chromatic number of Hasse diagrams of 2-dimensional
posets also implies that cA(2) is unbounded.
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Furthermore, Pach and Tardos [13] proved that for any n, there exists a set of n axis-parallel
rectangles in the plane such that one needs Ω(log n) colors for coloring the rectangles such that no
point is covered by a monochromatic set, hence that cÃ(2) is unbounded, implying that cÃ(k) is
unbounded.

Our results In Section 2, we consider the range space HP = (R2,R), where R is the set of
all halfplanes. We prove that cHP (k) ≤ 3k − 2, and pHP (k) ≤ 4k − 1. In other words, we can
ensure that a halfplane contains k points of different colors in two ways: either we k-color the
point set but require that the halfplane contains at least 4k − 1 points, or we allow the point set to
be (3k − 2)-colored. We also give lower bounds on the two functions.

In Section 3, we consider the range space HS = (R3,R), where R is the set of all halfspaces,
that is, sets of points on one side of a given plane. We prove that cHS(k) = O(k), i.e., that points
in R3 can always be colored with O(k) colors so that any halfspace containing at least k points
contains k distinct colors; and that cH̃S(k) = O(k), i.e. halfspaces in R3 can be colored such that
every point in the intersection of at least k of them is contained in halfspaces of k distinct colors.

We provide a number of results on range spaces defined by disks and pseudo-disks in Section 4.
For the range space D defined by disks, we prove that cD(k) = O(k) by mapping disks in the plane
to lower halfspaces in R3 and using the result of Section 3. For a dual range space P̃ defined by a
family of pseudo-disks we prove that cP̃(k) = O(k). So we can always color a set of pseudo-disks
with O(k) colors in such a way that any point covered by r pseudo-disks is covered by min{r, k}
pseudo-disks with distinct colors. As a consequence, since halfplanes could be viewed as a special
case of pseudo-disks, we directly have cH̃P (k) = O(k). We also show that cP(k) = O(k), the proof
of which involves similar arguments.

By lifting a 2D point set to the unit paraboloid z = x2 + y2 in 3D, every lower halfspace in
3D isolates a set of points which is contained in a disk in the original set of points, and thus
pHS(k) ≥ pD(k). We also prove that pH̃S(k) = pHS(k): coloring halfspaces is equivalent, via
projective duality, to coloring points with respect to halfspaces.

All the proofs are constructive, and polynomial-time algorithms can easily be derived from
them. The results are summarized in Table 1.

S cS(k) pS(k) ceS(k) peS(k)

halfplanes ≤ 3k − 2 (Thm. 1)? ≤ 4k − 1 (Thm. 3)? O(k) (Thm. 6)? ≤ 8k − 3 (Cor. 1)?
≥ 3k/2 (Thm. 2)? ≥ 4k/3 (Thm. 4)?

halfspaces in R3 O(k) (Thm. 5)? ∞ O(k) (Cor. 2)? ∞
(Implied by disks) (Implied by disks)

translates of a cent. O(k) (Thm. 7)? O(k2) [15] O(k) (Thm. 6)? O(k2) [15]
sym. convex polygon

axis-aligned ∞ [6] ∞ [6] ∞ [13] ∞ [14]
rectangles

disks O(k) ∞ (open disks [14]) 4 when k = 2 [17]
(Cor. 3, Thm. 5)? ≤ 24k + 1 (Rem. 1)?

pseudo-disks O(k) (Thm. 7)? ∞ (open disks [14]) O(1) when k = 2 [17]
O(k) (Thm. 6)?

Table 1: Results for range spaces induced by various families R of regions. The symbol ? indicates
new results; the symbol∞ indicates a function unbounded in terms of k.
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Application to Sensor Networks Let R be a collection of sensors, each of which monitors the
area within a surrounding disk. Assume further that each sensor has a battery life of one time unit.
The goal is to monitor a given planar region A for as long as possible. If we activate all sensors
in R simultaneously, A will be monitored for only one time unit. This can be improved if R can
be partitioned into c pairwise disjoint subsets, each of which covers A. Each subset can be used in
turn, allowing us to monitor A for c units of time. Obviously if there is a point in A covered by only
c sensors then we cannot partition R into more than c families. Therefore it makes sense to ask
the following question: what is the minimum number p(k) for which we know that if every point
in A is covered by p(k) sensors then we can partition R into k pairwise disjoint covering subsets?
This is exactly the type of problem that we described. Suppose we now make the assumption that
switching a sensor on or off does not consume energy. Then our Theorem 6 implies that we can
assign time slots to each sensor, using a total of O(k) slots, so that any point p that is covered by at
least k sensors will be monitored at least a constant fraction of the time.

For more on the relation between these partitioning problems and sensor networks, see the
paper of Venkatasubramanian et al. [3].

2 Halfplanes

In this section we study the case where the family R is the set of all halfplanes in R2. We denote by
HP = (R2,R) the corresponding infinite range space.

It is not always possible to color a set of points S with k colors such that every halfplane of size
k (that is, containing k points of S) is k-colorful, even for k = 2. The simplest example consists of
an odd number of points in convex position. This is our main motivation for allowing either the
number of colors or the range size to be greater than k.

For the proof of Theorems 1 and 3 the notion of Tukey depth is used:

Definition 1 ([20]). Given a set S of points in Rd, the Tukey depth of a point p (not necessarily in
the set) is the minimum number of points of S in a halfplane that contains p.

It is well known that for any set of n points in the plane, there exists a point in R2 at depth
t ≥ n/3. The depth-k region is the set of all points at Tukey depth k or more. It is easily seen that
this region is the intersection of all halfplanes containing more than n−k points of S and therefore
its boundary is a convex polygon. For more information on properties of Tukey depth, see [2]. We
now turn to some useful observations regarding depth-k regions.

Lemma 1. Let S be a finite set of more than 3k points in R2. Then every open halfplane not intersecting
the depth-k region of S contains at most 2k−2 points of S. The corresponding closed halfplane contains
at least k points.

Proof. Let Π be an open halfplane not intersecting the depth-k region. Without loss of generality,
we assume its bounding line ` is tangent to the depth-k polygon. Let Π′ be the corresponding closed
halfplane. Π′ contains at least k points since the point of tangency belongs to Π′ and has depth k.
On the other hand, ` contains either a side of the polygon or precisely one of its vertices, v.

In the former case Π contains less than k points because its complement contains more than
n − k points. In the latter case, Π is contained in the union of two open halfplanes, Π1 and Π2,
whose bounding lines pass through v and its two neighbors in the polygon (respectively). Since
each of Π1 and Π2 contains at most k − 1 points, Π contains at most 2k − 2 points.
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We define the orientation of a halfplane as the absolute angle of the inward normal of the line
bounding it. Thus, for example, the orientation of the halfplane defined by all points lying above
the x-axis is π

2 .
Let p be a point of S lying outside the depth-k region. It is easily seen that the set of orientations

of all closed halfplanes that are tangent to the depth-k region and that contain p form a closed
(circular) interval of length at most π. Thus, each point may be represented as an interval on the
unit circle. Let A be the set of arcs corresponding to points in S outside or on the boundary of the
depth-k region, and let A′ be the set of interiors of the elements of A.

Lemma 2. Every point on the unit circle is covered by at most 2k−1 arcs of A′, and every point that is
not the endpoint of an arc is covered by at least k arcs. Furthermore, the minimum number of segments
covering any point is at most k − 1.

Proof. Every point p on the unit circle represents the orientation of a closed halfplane Π′ tangent
to the depth-k region. Thus if p is not the endpoint of an arc, then the number of arcs that cover p
is at least the number of points in Π′, which is at least k by Lemma 1. As in the proof of Lemma 1,
if the boundary ` of the halfplane contains a vertex v but no edge of the depth k region, then Π′ is
contained in the union of v and two open halfplanes Π1 and Π2 whose bounding lines pass through
v and its two neighboring edges in the polygon. Since each of Π1 and Π2 contains at most k − 1
points, and there might be a point at v, Π′ contains at most 2k − 1 points. If ` contains an edge of
the depth k region, then all points on ` correspond to either empty arcs or to the endpoint of some
arc. Thus the arcs that cover p correspond to points in the open halfplane Π bounded by ` and their
number is at most k − 1.

Theorem 1. cHP (k) ≤ 3k − 2. That is, we can color any set of points in the plane with 3k − 2 colors
such that any halfplane containing h points is min{h, k}-colorful.

Proof. A proper coloring of a set of arcs on the unit circle is an assignment of colors to the arcs such
that no pair of arcs of the same color overlap. In [19] it was proved that every set of arcs on the
unit circle has a proper coloring with m + M colors, where m (respectively, M) is the minimum
(respectively, maximum) number of arcs covering each point of the circle. Combining this with
Lemma 2, we conclude that the corresponding set A′ can be (3k − 2)-colored. Accordingly we can
color the points (outside the depth-k region) of S that correspond to A′. The remaining points
are colored arbitrarily. Thus there exists a (3k − 2)-coloring of S such that every open halfplane
not intersecting – but tangent to – the depth-k region is colorful (the colors of points inside that
halfplane are pairwise distinct).

Now it remains to prove that every halfplane of size h is min{h, k}-colorful. Given such a
halfplane Π, there are two cases: (i) Π does not intersect the depth-k region. Then it is strictly
contained in an open halfplane Π′ whose boundary line is tangent to the depth-k region, and thus
no two points in it are colored with the same color. (ii) Π intersects the depth-k-region. Then it
contains a closed halfplane Π′ tangent to it. If the point p on the circle corresponding to Π′ is not
the endpoint of an arc, then Π′ contains at least k points of different colors. If p is the endpoint of
an arc then Π′ contains at least all points corresponding to arcs that cover a point infinitesimally to
the left of p, which also have at least k different colors.

We also get the following lower bound.
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G1

G2G3

Figure 1: Point set used in the proofs of Theorems 2 and 4.

Theorem 2. cHP (k) ≥ 3k/2. That is, coloring a set of points so that any halfplane containing h points
is min{h, k}-colorful may require 3k/2 colors.

Proof. This lower bound is achieved by a point set consisting of three subsets of k/2 points, aligned
on three halflines with a common origin and respective angles 0, 2π/3, and 4π/3 (see Figure 1).
These 3k/2 points must all have different colors, otherwise we can find a halfplane that contains
two such groups, and less than k colors. The number of points can be made arbitrarily larger by
adding points close to the origin of the halflines.

We now consider the depth-2k region. As described above, points outside the depth-2k region
are associated with a set of closed arcs, A, on the unit circle. Recall that each arc in A has length
at most π and that by Lemma 1 every point on the unit circle is covered by at least 2k arcs.

Lemma 3. Let A be a set of arcs of length at most π on the unit circle. If every point on the circle is
covered at least 2k times then A has a k-colorful k-coloring.

Proof. As noticed by Pach [12], a 2k-covering of the unit circle with arcs of length at most π is
decomposable into k disjoint coverings (this is seen by repeatedly removing a minimal covering of
the unit circle). Therefore we can assign one color to all arcs within each covering, so that every
point on the circle is covered by k colors.

Theorem 3. pHP (k) ≤ 4k − 1. That is, we can color any set of points in the plane with k colors such
that any halfplane containing at least 4k − 1 points is k-colorful.

Proof. LetA be the set of arcs corresponding to the points that lie outside or on the boundary of the
depth-2k region. By Lemma 3, A can be made k-colorful, as it covers every point of the unit circle
at least 2k times. This means that there exists a k-coloring of S such that every closed halfplane
tangent to the depth-2k region is k-colorful. As we consider large point sets in comparison to k,
there always exists a depth-2k region (specifically, as long as n ≥ 6k).

Let Π be a halfplane containing at least 4k − 1 points. Π must intersect (or touch) the depth-
2k region, because every open halfplane tangent to the region contains at most 4k − 2 points, by
Lemma 1. Thus Π contains a closed halfplane Π′ whose boundary is tangent to the depth-2k region.
By construction, Π′ must be k-colorful and therefore so must be Π.

We get a lower bound using the same example as for cHP (k).
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Theorem 4. pHP (k) ≥ 4k/3. That is, coloring a set of points with k colors so that any halfplane
containing at least p points is k-colorful may require that p ≥ 4k/3.

Proof. Consider a set of 3(k + x)/2 points forming a star with three branches of size (k + x)/2,
denoted by G1, G2, and G3 (see Figure 1). We show that a k-coloring of this set where any
halfplane of size k + x contains all k colors exists only if x ≥ k/3.

Suppose there exists such a k-coloring. We denote by S1 = G1 ∪ G2, by S2 = G2 ∪ G3, and by
S3 = G3∪G2. The sets S1, S2 and S3 are contained in halfplanes, and have k+x points each. Thus
each of them must contain all k colors.

The set G1 contains (k + x)/2 points, and thus points of at most (k + x)/2 different colors. As
S1 contains all k colors, G2 has points of at least k− (k+x)/2 = (k−x)/2 colors not represented in
G1. The same reasoning holds for S3 and G3. Hence G3 must also contain at least (k − x)/2 colors
not represented in G1, and at least (k − x)/2 of these colors are the same as those in G1.

Now consider S2. As it contains both G2 and G3, which have (k − x)/2 colors in common, it
can contain up to k+ x− (k− x)/2 = (k+ 3x)/2 distinct colors. As we know that S2 contains all k
colors, we deduce k ≤ (k + 3x)/2 and thus x ≥ k/3.

Corollary 1. pH̃P (k) ≤ 8k− 3. That is, we can color any set of halfplanes with k colors such that any
point in the plane covered by 8k − 3 halfplanes is contained in halfplanes of k different colors.

Proof. If we restrict ourselves to lower halfplanes, pH̃P (k) is equal to pHP (k) by projective duality.
So if we are given a set of halfplanes (lower and upper), every point which is covered 8k−3 times is
covered at least 4k− 1 times by either lower halfplanes or upper halfplanes. Thus we can color the
lower and the upper halfplanes independently, using theorem 3 and obtain pH̃P (k) ≤ 8k − 3.

3 Halfspaces in R3

In this section, we deal with the case whereR consists of all halfspaces in R3. We callHS = (R3,R)
the corresponding infinite range space and consider the value of cHS(k).

The depth-k region in R3 is a convex polyhedron.

Lemma 4. Given a set of more than 4k points in R3, every open halfspace not intersecting the depth-k
polyhedron and whose bounding plane is tangent to the depth-k polyhedron contains at most 3k − 3
points. The corresponding closed halfspace contains at least k points.

Proof. The proof is similar to that of Lemma 1 in 2D. We consider open and closed halfspaces
tangent to the depth-k polyhedron. By the definition of the depth-k polyhedron, any such closed
halfspace contains at least k points. A halfspace is either tangent at a vertex, an edge, or a face
of the polyhedron; if an open halfspace is tangent at a face, it contains at most k − 1 points; if
an open halfspace is tangent at an edge (respectively, a vertex) it is contained in the union of two
(respectively, three) open halfspaces tangent at a face of the polyhedron.

We consider halfspaces defined by planes tangent to the depth-k polyhedron. Each normal
vector to one of these planes corresponds to precisely one halfspace and defines one point on the
unit sphere S2. We define Rp for every p ∈ S as the set of points on the unit sphere corresponding
to normal vectors of tangent halfspaces containing p. We show that these sets are pseudo-disks,
and provide an upper bound on cHS(k) by coloring their intersection graph.
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Lemma 5. Let p and q be two points of S outside the depth-k polyhedron. Then,

1. Rp and Rq are connected subsets of S2.

2. The boundaries of Rp and Rq intersect at most twice.

Proof. The first property follows directly from the convexity of the depth-k polyhedron. Given a
point p outside the depth-k region, any convex combination of the normal vectors of all planes
tangent to the polyhedron and incident to p define a halfspace containing p.

To prove that the boundaries of Rp and Rq intersect at most twice, we look at all planes tangent
to the polyhedron, and incident to both p and q. These map to points that are on the boundary of
both Rp and Rq. As p and q are distinct they define a line. Through this line, there exist at most
two planes tangent to the depth-k polyhedron.

The proof of the next theorem uses the following definition and lemma from graph theory [9].

Definition 2. A simple graph G = (V,E) is called k-degenerate for some positive integer k, if every
(vertex-induced) subgraph of G has a vertex of degree at most k.

We use the standard notion of chromatic number χ(G) of a graph G, defined as the number of
colors needed to color the vertices of G such that no edge is monochromatic.

Lemma 6. Let G = (V,E) be a k-degenerate graph. Then χ(G) ≤ k + 1.

Proof. Proceed by induction on n = |V |. Let v ∈ V be a vertex of degree at most k. By the induction
hypothesis, the graph G\v (obtained by removing v and all of its incident edges from G) is (k+ 1)-
colorable. Since v has at most k neighbors there is always a free color that can be assigned to v
which is distinct from the colors of its neighbors.

Theorem 5. cHS(k) = O(k). That is, we can color any set of points in R3 with O(k) colors such that
any halfspace containing h points is min{h, k}-colorful.

Proof. Let A = {Rx|x ∈ S, outside or on the surface of the depth-k polyhedron}. By Lemma 5, we
know that A is a set of pseudo-disks on S2. Let A′ be the corresponding open pseudo-disks. By
Lemma 4, we also know that every point belongs to at most 3k − 2 regions of A′.

By a lemma of Sharir [16], the complexity of a planar arrangement of bounding curves of n
pseudo-disks such that any point belongs to the interior of at most i pseudo-disks is O(ni). We
observe that this lemma also applies to pseudo-disks on a sphere. This can be seen by projecting
the arrangement of pseudo-disks Rp on the unit sphere onto the plane. We can use, for instance, a
stereographic projection from the point x on the top of the sphere to a horizontal plane below it,
thereby sending x to infinity. The point x is contained in at most 3k − 2 pseudo-disks, which are
reverted in the projection. We therefore have an arrangement of pseudo-disks boundaries in the
plane such that each point is contained in at most 6k − 4 pseudo-disks.

Thus from this lemma, the complexity of the bounding curves in A′ is O(nk). Now consider the
intersection graph of A′. This graph is O(k)-degenerate. To see this, consider a pair of intersecting
regions r1, r2 ∈ A′. Either the boundaries of r1 and r2 intersect at some vertex, in which case we
know that there are O(nk) such vertices. Or one of the regions, say r1, is contained in r2. However,
since every point belongs to at most O(k) regions, every region is contained in at most O(k) other
regions, hence the total number of such pairs of regions is at most O(nk). Thus the number of
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edges in the intersection graph is O(nk). This is true for every induced subgraph and hence by
Lemma 6, this graph is O(k)-colorable. A similar observation has already been made by Chan [4].

Now it remains to prove that every halfspace of size h ≥ k is k-colorful. Given such a halfspace,
there are two possibilities. Either the halfspace does not intersect the depth-k polyhedron. Then it
is strictly contained in an open halfspace tangent to the polyhedron, and thus every point it contains
has a unique color. Or the halfspace intersects the polyhedron and thus contains a closed halfspace
tangent to it. Then it contains at least k different colors.

Corollary 2. cH̃S(k) = O(k). That is, we can color any set of halfspaces in R3 with O(k) colors so
that any point in the intersection of at least k of them is covered by k different colors.

Proof. Given a set of halfspaces in R3, we first consider the subset of lower halfspaces. Each such
lower halfspace is the set of point below a given plane. By projective duality, a set of planes can be
mapped to a set of points, such that a point is above k planes if and only if in the projective dual a
plane is above k points. In other words, by applying Theorem 5 in the dual, we derive a coloring
for the lower halfspaces in the primal, which is correct as the inclusion relation (above-below) is
preserved by projective duality: every lower halfspace containing at least k points in the primal is
a point covered by k halfspaces in the projective dual.

We apply the same technique to color the upper halfspaces, using different colors. Now if a
point is in ` lower halfspaces and u upper halfspaces, and `+u ≥ k, then it is covered by halfspaces
with k different colors: either ` < k and u < k, and we have `+ u different colors, or one of them
is at least k, and we have k different colors.

4 Disks and pseudo-disks

In this section we consider the case where the ranges in R are disks or pseudo-disks. We denote by
D = (R2,R) the range space for disks, and by D̃ its dual, where the ground set is the set of disks
and the ranges are the subsets of all disks having a common point. Similarly, we use the notations
P and P̃ for the range spaces defined by pseudo-disks.

The proof given above for halfspaces in R3 can be used to prove that cD(k) = O(k). This is seen
by a standard lifting transformation of disks and points in the plane, to points and halfspaces in R3

that preserves the incidence relations.

Corollary 3. cD(k) = O(k).

Proof. Given a set S of points in R2, we proceed by lifting the points onto the parabola of equation
z = x2 + y2 in R3. It is known that any disk in R2 is the projection onto the plane xy of the
intersection between the parabola and a lower halfspace in R3. The result follows by applying
Theorem 5 to this set.

In the following, we give a bound for the value of cP̃(k), where P̃ is the dual range space defined
by pseudo-disks. Similar to the proof of Theorem 5, we analyze the degeneracy of a graph induced
by a finite set of regions.

Definition 3. Let S be a finite family of simple closed Jordan regions in the plane. We denote by Gk(S)
the graph on S whose edges are all pairs r, s ∈ S such that there exists a point p that belongs to r ∩ s
and at most k other regions of S.
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Lemma 7. Let S be a family of pseudo-disks. Then Gk(S) is O(k)-degenerate and hence the chromatic
number of Gk(S) is at most O(k).

We aim to show that the number of edges in any (vertex-induced) subgraph ofGwithm vertices
is at mostO(km), and therefore, the average degree in any induced subgraph is at mostO(k). Thus,
there must exist a vertex of degree at most O(k) in any induced subgraph. Hence, Gk(S) is O(k)-
degenerate and by Lemma 6 it is O(k)-colorable as asserted. We need the following lemmas:

Lemma 8. There exists a constant c such that for any set S of n pseudo-disks, G0(S) has at most cn
edges.

Proof. See for instance the proof of Lemma 5.1 in [17].

Lemma 9. Let S be a family of n pseudo-disks and let G = (S,E) be a subgraph of the intersection
graph of S. (Thus E is a subset of the set of all pairs of regions from S that have a non-empty
intersection.) For each edge e = (a, b) ∈ E choose a point pe ∈ a ∩ b that belongs to the intersection
of a and b. Let X be the set of all pairs (e, r) such that e ∈ E and r ∈ S \ {a, b} contains the point pe
chosen for the edge e. Suppose that |E| > 4cn where c is the constant from Lemma 8. Then |X| ≥ |E|

2

4cn

Proof. The proof proceeds in two steps. In the first step, we prove the following bootstrapping
inequality:

|X| ≥ |E| − cn

In the second step we use a random sampling argument similar to the one used for the Crossing
Lemma (see, e.g., [1]).

The proof of the first step proceeds by induction on |E| − cn. For the case

|E| − cn ≤ 0

the claim is trivial. Assume that the claim holds for some non-negative integer k (namely, for |E|
and n satisfying |E| − cn = k). Suppose that |E| − cn = k + 1. Since |E| > cn, Lemma 8 implies
that there must exist a region r ∈ S, and an edge e ∈ E which generates at least one configuration
(e, r) ∈ X (namely, that point pe belongs to r, for otherwise X is empty, meaning that there is no
edge of Gk(S) for any k > 0; thus the graph is a subgraph of G0(S) and the number of edges in E
by Lemma 8 is at most cn). After removing e from E we are left with |E| − 1 edges, n regions, and
a set X ′ of configurations, where |X| ≥ |X ′| + 1. We have |E| − 1 − cn = k, so we can apply the
induction hypothesis to obtain |X ′| ≥ |E| − 1− cn. Thus |X| ≥ |X ′|+ 1 ≥ |E| − cn. This completes
the proof of the first step.

Let X denote the set of configurations, as above. We take a random sample S′ of the regions in
S by choosing each region independently with some fixed probability p (to be determined later on).
Let E′ denote the subset of edges in E, all of whose defining regions are in S′. Let n′ = |S′|;m′ =
|E′|, and let X ′ ⊂ X denote the subset of configurations in X all of whose defining regions a, b and
r are in S′. By the above bootstrapping inequality, we have |X ′| ≥ m′ − cn′. Note that |X ′|, m′
and n′ are random variables, so the above inequality holds for their expectations as well. Hence,
using linearity of expectation, E[|X ′|] ≥ E[m′] − cE[n′]. It is easily seen that E[n′] = pn. We have
E[m′] = p2 |E| and E[|X ′|] = p3 |X|. Indeed, the probability that a given edge e ∈ E belongs to
E′ is the probability that the two regions defining e are chosen in S′, which is p2 for any fixed
e ∈ E. Similarly, the probability that a configuration of a region r ∈ S that contains a point pe is
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counted in X ′ is p3. Substituting these values in the above inequality, we get p3 |X| ≥ p2 |E| − cpn,
or |X| ≥ |E|

p −
cn
p2

. This inequality holds for any 0 < p ≤ 1, and we choose p = 2cn/ |E| (by

assumption, p ≤ 1) to obtain |X| ≥ |E|
2

4cn . This completes the proof of the lemma.

Proof of Lemma 7: Let X denote the set of configurations as above when E is the set of edges of
Gk(S) and for each edge e ∈ E, pe is the point witnessing that e ∈ E (that is, pe is a point that
belongs to the regions defining e and at most k other regions of S). By Lemma 9 we have:

|X| ≥ |E|
2

4cn

On the other hand, note that by definition of Gk(S) any point pe can belong to at most k regions of
S so obviously

|X| ≤ k |E|

Combining the two bounds we have: |E| ≤ 4ckn. Thus the sum of degrees of vertices in the
graph Gk(S) is at most 8ckn, so the average degree is at most 8ck. Thus there always exists a vertex
with degree at most 8ck, hence Gk(S) is 8ck-degenerate. This completes the proof of the lemma.
�

Theorem 6. cP̃(k) = O(k)

Proof. We know by Lemma 7 that there exists a constant c such that Gk(S) is ck-degenerate. We
show that we can color the pseudo-disks in S with ck + 1 color such that for any point p with
depth d(p), the set of disks Ep containing p is min{d(p), k}-colorful. We use ck + 1 colors to color
pseudo-disks inductively. The proof is by induction on |S| = n. Let r ∈ S be a region whose degree
in Gk(S) is at most ck. By Lemma 7, there exists such a region. The induction hypothesis is that
S \ {r} admits a valid coloring. To complete the inductive step, we must assign a color to r so that
the new coloring is still valid. Note that by the inductive hypothesis, points that belong to r and at
least k other regions are already contained in some k regions (in S \ {r}), all colors of which are
distinct. Hence, the color of r will not affect the validity for those points. We may only run into
trouble for those points p ∈ r that are contained in at most i (for i ≤ k−1) other regions. However,
note that any region containing p is a neighbor of r in Gk(S) by definition. Note also that by the
induction hypothesis, all regions containing such a point p get distinct colors. Moreover, since the
number of neighbors of r in Gk(S) is at most ck we can color r with a color distinct from all its
neighbors in Gk(S). Thus for any point in r that belongs to exactly i (for i ≤ k − 1) other regions,
all regions covering this point including r will have distinct color. This completes the inductive step
and hence the proof of the theorem.

Remark 1. For the special case of real disks, it can be shown that the constant in Lemma 8 is c = 3
(we omit the details here). Thus by Lemma 7, the graph Gk(S) is 24k-degenerate. Hence in the special
case of real disks, we have that cD̃(k) ≤ 24k + 1.

For the version in the primal range space in which we color points rather than regions, we can
also prove the following:

Theorem 7. cP(k) = O(k)

Proof. The proof is very similar to the proof of Theorem 6 and uses the same ingredients. The
analogue of Lemma 8 is provided in [18].
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